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ABSTRACT Surfactant protein D (SP-D) plays an important role in the innate immune system by recognizing and binding to 

glycans on the surface of pathogens, facilitating their clearance. Despite its importance, the detailed binding mechanisms be

tween SP-D and various pathogenic surface glycans remain elusive due to the limited experimentally solved protein-glycan crys

tal structures. To address this, we developed and validated a computational workflow that integrates induced fit docking, 

molecular mechanics/generalized Born surface area binding free energy calculations, and binding pose metadynamics simula

tions to accurately predict stable SP-D-glycan complex structure and binding mechanisms. By utilizing this workflow, we iden

tified primary and secondary binding sites in SP-D critical for glycan recognition and uncovered a calcium chelation mode 

correlating with high binding affinity. To demonstrate the workflow’s utility, we investigated the binding of pilin glycan from Pseu

domonas aeruginosa (P. aeruginosa) to SP-A, SP-D, and mannose-binding lectin (MBL). We found that SP-D exhibited the most 

stable binding with pilin glycan versus SP-A and MBL, highlighting its potential role in the innate immune response against 

P. aeruginosa infection. These findings deepen our understanding of SP-D’s role in the innate immune response and provide 

a basis for engineering SP-D variants for therapeutic applications. Moreover, our computational workflow can serve as a power

ful tool for exploring protein-ligand interactions in diverse, biologically significant systems. It provides a robust framework to 

guide experimental studies and accelerates the development of novel therapeutics, effectively bridging the gap between compu

tational insights and practical applications.

INTRODUCTION

The innate immune system constitutes the body’s primary 

defense mechanism against pathogenic invasion, providing 

a rapid and nonspecific response to infections (1–3). Central 

to this system are pattern recognition receptors (PRRs), 

which identify pathogen-associated molecular patterns on 

microbial surfaces (1,2,4,5). Surfactant protein D (SP-D) 

is a crucial PRR that significantly contributes to pulmonary 

innate immunity by recognizing and binding to glycans pre

sent on the surfaces of various pathogens (6–8). Other 

PRRs, such as SP-A and mannose-binding lectin (MBL), 

also play essential roles in immune defense by recognizing 

distinct microbial components and initiating appropriate im

mune responses (9–11).

Among the various components of the innate immune 

system, SP-D has emerged as a key player in recognizing 

and binding to pathogenic glycans, thereby facilitating the 

clearance of harmful microorganisms (12–14). SP-D, a 

member of the collectin family, is primarily found in the 

lungs, where it contributes to pulmonary immunity by 

aggregating pathogens for removal and modulating inflam

matory responses (13,15,16). Given its pivotal role, eluci

dating the mechanisms of SP-D-glycan interactions can 
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provide insights into the development of novel therapeutic 

strategies, such as enhancing SP-D’s affinity for specific 

pathogens or designing SP-D-based therapeutics.

SP-D interacts with various pathogens, including viruses, 

bacteria, and fungi (17–19). For example, SP-D has been 

shown to bind to glycans on the surface of the influenza A 

virus (IAV), contributing to the clearance of the virus 

from the lungs (20,21). Additionally, SP-D recognizes and 

binds to surface glycans of Pseudomonas aeruginosa 

(P. aeruginosa), an opportunistic bacterium that frequently 

colonizes the lungs of immunocompromised individuals, 

such as those with cystic fibrosis (9,22). P. aeruginosa’s 

pili, which are hair-like appendages adorned with surface 

glycans like pilin glycan, facilitate attachment to host cells 

and contribute to its pathogenicity (23–27). Moreover, SP- 

D’s interactions with other pathogens, such as Aspergillus 

fumigatus and Mycobacterium tuberculosis, highlight its 

broad-spectrum antimicrobial activity (28,29).

Current research on SP-D-glycan interactions has yielded 

valuable insights through both experimental and computa

tional studies (30–33). However, significant gaps remain 

in our understanding of the detailed binding mechanisms 

and specificities between SP-D and different pathogenic sur

face glycans at the atomic level. This is primarily due to the 

vast diversity of surface glycans found on various pathogens 

and the limited availability of experimentally solved com

plex structures (34,35). To elucidate the binding mecha

nisms between SP-D and pathogenic surface glycans in 

the absence of crystal complex structures, a comprehensive 

computational modeling workflow capable of accurately 

predicting complex structures is essential.

In this study, we propose a novel computational modeling 

workflow that combines several computational modeling 

methods, including induced fit docking, molecular me

chanics/generalized Born surface area (MMGBSA) binding 

free energy calculations, and binding pose metadynamics 

(BPMD) simulations. This workflow is designed to over

come the limitations of traditional docking approaches 

and provide a more comprehensive understanding of SP- 

D-glycan interactions. The main objectives of this study 

are threefold: 1) to develop and validate a comprehensive 

computational modeling workflow for predicting stable 

complex structures of SP-D with various pathogenic surface 

glycans; 2) to identify the key binding sites and mechanisms 

involved in SP-D’s recognition of glycans; and 3) to predict 

novel pathogenic surface glycan binders using the devel

oped workflow, such as pilin glycan from P. aeruginosa. 

By achieving these objectives, we aim to significantly 

enhance our understanding of the role played by SP-D in 

the innate immune system, facilitating the rational design 

of engineered SP-D variants with improved binding affinity 

and specificity for therapeutic applications. Moreover, the 

computational modeling workflow developed in this study 

has the potential for broader applicability in investigating 

protein-glycan interactions in various other biological 

contexts, extending the impact of this research beyond the 

specific realm of SP-D.

MATERIALS AND METHODS

Viral glycan fragment library construction

The computational workflow started by the construction of a viral glycan 

fragment library using the GLYCAM-Web server (https://glycam.org/). 

This library consisted of 34 glycans commonly observed in protein-glycan 

experimentally solved crystal structures, with detailed information on each 

glycan fragment provided in Table S1. The initial three-dimensional (3D) 

structures of these glycans were generated in PDB format and subsequently 

converted to SDF format using Maestro within the Schrodinger Suite to 

facilitate induced fit docking (36).

Induced fit docking

To explore the binding mechanisms between SP-D and the glycans, we em

ployed the induced fit docking protocol within the Schrodinger Suite (37). 

This method was chosen for its ability to account for the flexibility of both 

the receptor and the ligand, which is essential for accurately modeling the 

dynamic nature of protein-glycan interactions. In induced fit docking, 

the wild-type SP-D structure (PDB: 3G83) was used as the receptor, and 

the Protein Preparation Wizard in the Schrodinger Suite was used to opti

mize its structure (20,36). The viral glycan fragment library was prepared 

for induced fit docking using the LigPrep module in the Schrodinger Suite, 

where all possible ionization states were generated with Epik at pH 7.4 (36). 

Physiological pH 7.4 was selected to accurately represent the conditions in 

human tissues, specifically the lung environment, where SP-D interacts 

with pathogenic glycans. The optimized potentials for liquid simulation 

(OPLS_2005) force field was employed for both receptor and ligand prep

aration. A docking grid of 46 × 46 × 46 Å was centered on the primary cal

cium ion in the carbohydrate recognition domain (CRD) of SP-D. The 

primary calcium ion was also constrained to ensure proper recognition of 

the glycans. The extended sampling protocol in induced fit docking was uti

lized to enhance binding pose sampling.

After induced fit docking, over 1000 binding poses were generated, rep

resenting various conformations of SP-D in complex with different glycans. 

Instead of using default scoring functions to rank the binding poses, we em

ployed MMGBSA binding free energy calculations as a score function to 

rank all the binding poses. All MMGBSA calculations were conducted 

via the prime MMGBSA module in the Schrodinger Suite using the 

OPLS_2005 force field (36). The poses were ranked based on MMGBSA 

binding free energies, and the top five poses for each glycan were selected 

for further binding stability evaluation.

Binding pose metadynamics simulations

To assess the stability of the selected binding poses, we performed BPMD 

simulations. The protein-glycan complexes from the top five binding poses 

were used as input for BPMD simulations. Each system was parameterized 

using the S-OPLS force field and solvated with the extended simple point 

charge (SPC/E) water model within a rectangular box, maintaining a 

10 Å distance between the complex and the box boundaries. The systems 

were neutralized with NaCl. The metadynamics simulations were conduct

ed using the protocol in the BPMD module in the Schrodinger Suite (36,38). 

During metadynamics, the collective variable was defined as the root mean- 

square deviation (RMSD) of the glycan’s heavy atoms relative to their po

sitions in the induced fit docking output pose. The default biasing parame

ters recommended by Schrodinger were used, with a hill height of 

0.05 kcal/mol and a hill width of 0.02 kcal/mol, approximating one-tenth 

of the system’s thermal energy (kBT). Each metadynamics simulation 
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was run for 10 ns, with 10 independent simulations performed for each 

binding pose to improve statistical reliability. This resulted in a total of 

17 μs of metadynamics simulations across all glycans. The RMSD of the 

glycan over the simulations was measured to assess binding stability. Bind

ing poses exhibiting low RMSD fluctuations were considered more stable. 

For each glycan, the binding pose with the lowest average RMSD was 

selected as the most stable and used for subsequent analyses of SP-D- 

glycan interactions.

Alchemical absolute binding free energy 

calculations

To validate our computational workflow, we performed alchemical absolute 

binding free energy (ABFE) calculations on five protein-glycan complexes 

identified from the BPMD stage and compared the results to experimental 

binding affinity data. The methodology followed the protocol outlined in 

our previous work, briefly summarized here (39).

We performed ABFE calculations using free energy perturbation to eval

uate the binding affinities between SP-D and glycans. A modified version of 

BAT.py v.2.2, following the protocol of Heinzelmann and Gilson, was 

applied to the protein-glycan systems (40). Harmonic translational and rota

tional restraints were imposed to stabilize the glycan within the binding 

pocket during perturbation, whereas conformational restraints were applied 

to both the receptor and ligand. The simulations were conducted across 12 λ 
windows, using Gaussian quadrature to decouple ligand Lennard-Jones and 

charge interactions. Additional restraint contributions were computed 

across 16 windows, with the total ABFE calculated as the sum of the free 

energy components. Data collection occurred over 10 ns per window, lead

ing to a total simulation time of 1280 ns per system. The results were pro

cessed using the multistate Bennett acceptance ratio and corrected to the 

standard state.

Molecular dynamics simulations

To further investigate the interactions between three collectins—SP-D, 

MBL, and SP-A—and the pilin glycan from P. aeruginosa, we conducted 

extensive unbiased molecular dynamics (MD) simulations. The correspond

ing pilin glycan’s 2D structure and 3D structure are shown in Figs. S1 and 

S2. Since there is no standard force field available for the pilin glycan, we 

first assigned partial charges using the restrained electrostatic potential 

approach (41). This was done using the B3LYP/6-311++G** basis set 

with an optimized structure in Gaussian 16 (42). Additional force field pa

rameters were generated by Antechamber based on the generalized Amber 

force field (GAFF2) topology (43,44). The SP-D and MBL structures were 

retrieved from the PDB (PDB: 3G83 and 1UHP, respectively), whereas the 

human SP-A structure was generated via homology modeling using 

SWISSMODEL, with the rat SP-A structure (PDB: 5FFT) serving as the 

template (20,45–47). Each collectin’s complex structure was obtained using 

our computational workflow, which was then used as the starting structure 

for the MD simulations.

System preparation was performed using the tleap module from 

AmberTools23, where hydrogen atoms were added to the structures (43). 

The Amber ff19SB force field was used to parameterize the proteins, 

whereas the previously generated parameters were applied to the pilin 

glycan (48). Each protein-glycan complex was solvated in an optimal point 

charge (OPC) water box, with a minimum distance of 10 Å between the 

complex and the box edges (49). Na+ and Cl− ions were added to neutralize 

the system, and the ionic strength was adjusted to 0.15 M NaCl to mimic 

physiological conditions.

The MD simulations followed the same protocol described in our previ

ous work (39). Initially, a two-stage energy minimization was performed: 

first, restraining the protein-glycan complex with a force constant of 

50 kcal/(mol⋅Å2), followed by unrestrained minimization. This was fol

lowed by a two-phase equilibration process. In the first phase, the system 

was heated from 0 to 298 K over 2 ns in the NVT ensemble, applying har

monic restraints of 50 kcal/(mol⋅Å2). The second phase involved equilibra

tion at 298 K and 1 bar in the NPT ensemble for 50 ns. Temperature control 

was achieved using Langevin dynamics, and pressure was maintained with 

a Monte Carlo barostat (50–52). SHAKE was employed to constrain 

hydrogen bonds, and long-range, nonbonded interactions were computed 

using the particle mesh Ewald method with a 10 Å cutoff (53). Production 

MD simulations were conducted for 1000 ns in the NPT ensemble using 

GPU-accelerated Amber22 (54).

RESULTS AND DISCUSSION

Computational modeling workflow for 

investigating protein-glycan interactions

To investigate the binding mechanisms between SP-D and 

various glycans, we developed a comprehensive computa

tional modeling workflow that integrates induced fit dock

ing, MMGBSA binding free energy calculations, and 

BPMD simulations (Fig. 1).

The workflow begins with the construction of a digital li

brary of glycan conformers, which are then subjected to 

induced fit docking to generate a diverse ensemble of SP- 

D-glycan complex structures. Although induced fit docking 

accounts for the flexibility of both the receptor and the 

ligand, its scoring functions may not always accurately 

reflect the stability of the binding poses, potentially over

looking energetically favorable conformations. To address 

this limitation, we employed MMGBSA binding free energy 

calculations, which, despite being computationally inten

sive, provide higher accuracy than the traditionally used 

score functions in estimating binding affinities. This method 

was used to rank the generated complexes and select the top 

FIGURE 1 Schematic representation of the computational modeling 

workflow integrating induced fit docking, MMGBSA binding free energy 

calculations, and BPMD simulations.
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five conformers of each glycan type for further analysis. 

These selected complexes were then evaluated using 

BPMD simulations, an enhanced sampling technique that 

efficiently assesses ligand binding stability in solution. 

BPMD measures the RMSD of the ligand’s heavy atoms 

relative to their initial positions under the influence of a 

consistent biasing force. Ligands that are not stably bound 

exhibit higher RMSD fluctuations, as exemplified by pose 

5 in Fig. 1. The binding pose with the lowest RMSD, indic

ative of the highest stability, was subsequently used for 

detailed analyses of the binding mechanisms.

The workflow integrates three complementary computa

tional methods, each offering distinct advantages, to bal

ance the broad exploration of binding conformations with 

rigorous assessment of stability. Induced fit docking cap

tures the flexibility of both the receptor and ligand, 

enabling the generation of diverse conformational ensem

bles of protein-glycan complexes. We observed that 

different glycans can induce distinct conformational 

changes in SP-D, with RMSD values (relative to the un

bound protein) ranging from 0.3 to 0.85 Å, as shown in 

Fig. S3. Larger or more complex glycans generally cause 

more pronounced rearrangements, underscoring the impor

tance of incorporating protein flexibility when modeling 

protein-glycan interactions. MMGBSA provides a more ac

curate and quantitative ranking of binding affinities by 

incorporating solvation effects and free energy calcula

tions, addressing limitations in traditional docking scoring 

functions. BPMD further enhances the evaluation by simu

lating the dynamic behavior of complexes in an explicit so

lution, delivering a more reliable stability assessment 

than reliance on MMGBSA free energy values alone. 

Indeed, we observed cases where the most stable binding 

pose determined by BPMD diverged from the ranking 

based on MMGBSA binding free energies, as shown in 

Table S2. Taking all this together, this workflow is hypoth

esized to create a robust framework for accurately predict

ing stable protein-glycan complex structures.

Validation of the computational modeling 

workflow

To validate the accuracy of our computational workflow, 

we compared the predicted binding affinities and prefer

ences of various glycans for SP-D with experimental 

data (32). Table 1 presents detailed descriptions of SP- 

D’s binding preferences for five saccharides, for which 

experimentally measured IC50 values are available. 

Initially, we employed our workflow to predict the com

plex structures of different glycans bound to SP-D. Subse

quently, we calculated the binding affinities of these 

complexes using ABFE calculations, as described in our 

previous study (39).

To assess the agreement between our computational pre

dictions and experimental measurements, we performed a 

correlation analysis between the computationally predicted 

binding affinities and the experimentally measured values 

in Fig. 2, and the corresponding values are listed in 

Table 1. This analysis yielded a Pearson correlation coeffi

cient of 0.9, indicating a strong positive correlation between 

the two datasets. The high correlation demonstrates that our 

computational modeling workflow can accurately predict 

the binding affinities and preferences of glycans for SP-D, 

closely aligning with experimental observations. This level 

of agreement underscores the reliability and robustness of 

our workflow as a tool for predicting stable protein-glycan 

complex structures.

Identification of primary and secondary binding 

sites in SP-D

Using our validated computational workflow, we predicted 

the stable complex structures of various glycans bound to 

SP-D and investigated their binding mechanisms. We first 

identified the primary binding sites within the CRD of 

TABLE 1 Five glycan fragments and their corresponding 

experimental IC50 values and computationally predicted ΔG for 

binding with SP-D

Glycan fragment IC50 (mM) Predicted ΔG (kcal/mol)

DGlcpa1-OH 3.40 − 1.96

DManpa1-OH 4.10 − 0.33

DGlcpa1-4DGlcpa1-OH 2.50 − 2.85

DGalpb1-OH 13.00 0.42

DGlcpNAcb1-OH 9.80 0.90

FIGURE 2 Correlation between computationally predicted binding affin

ities using ABFE calculations and experimentally measured values, 

yielding a Pearson correlation coefficient of 0.9.
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SP-D, centered around a primary calcium ion and 

comprising residues Glu321, Glu329, Asn341, and the 

calcium ion itself (Fig. 3). Monosaccharides interact with 

these residues through hydrogen bonding and chelation 

with the calcium ion. The primary binding site is consis

tently involved in all stable binding poses, underscoring 

its critical role in the recognition and binding of glycans 

by SP-D.

As the glycan size increases from monosaccharides to di

saccharides and oligosaccharides, additional interactions 

with a secondary binding site further stabilize the binding. 

A heatmap analysis of the hydrogen bond occupancy be

tween saccharides and residues in the SP-D CRD reveals 

that, in addition to the primary binding site residues, several 

adjacent residues from the secondary binding site, including 

Asp325, Glu333, Phe335, Thr336, Arg343, Glu347, and 

Arg349, are involved in saccharide binding (Fig. 4). 

Notably, our previous study demonstrated the molecular 

mechanisms by which natural variants Asp325Ala and 

Arg343Val, located in the secondary binding site, enhance 

SP-D’s binding with the surface glycan from IAV (33). 

This finding highlights the importance of the secondary 

binding site in modulating SP-D’s binding affinity and spec

ificity toward different glycan targets.

FIGURE 3 Atomic interaction between SP-D 

and different monosaccharides, including (a) 

DGalpb1-OH, (b) DGlcpa1-OH, (c) DManpa1- 

OH, (d) LFucpa1-OH, (e) DGlcpNAcb1-OH, and 

(f) DNeup5Aca2-OH. The CA401 is shown in a 

magenta sphere. The yellow dashed lines represent 

hydrogen bonds.

FIGURE 4 Heatmap of the hydrogen bond frac

tion between SP-D and 12 disaccharides and 15 ol

igosaccharides.
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Role of calcium chelation in SP-D-glycan binding

A detailed examination of the most stable binding confor

mations of all glycans revealed a ubiquitous calcium chela

tion mode that plays a pivotal role in the binding affinity 

between SP-D and glycans (Fig. 5). This chelation mode in

volves the coordination of two hydroxyl groups from 

the glycan with the calcium ion in conjunction with five 

coordinating residues surrounding the primary calcium ion 

(Fig. 5 a). The geometry of this chelation complex is highly 

conserved among the stable binding poses, suggesting its 

importance in maintaining the structural integrity and spec

ificity of SP-D-glycan interactions.

To quantitatively assess the relationship between the sta

bility of the calcium chelation and the binding affinity, we 

performed a correlation analysis between the chelation oc

cupancy and the MMGBSA binding free energies derived 

from the BPMD trajectories. The chelation occupancy rep

resents the fraction of simulation time during which the 

glycan hydroxyl groups remain coordinated with the pri

mary calcium ion. Our analysis yielded a Spearman correla

tion coefficient of − 0.393 (p = 0.002) (Fig. 5 b), indicating 

a significant inverse relationship between chelation stability 

and binding free energy. A chelation occupancy of 200% 

corresponds to both hydroxyl groups from the glycan being 

stably chelated with the primary calcium ion throughout the 

entire BPMD simulation. This high chelation occupancy is 

associated with more negative binding free energies, signi

fying stronger and more thermodynamically favorable 

binding.

These findings underscore the critical role of the calcium 

chelation mode in driving high-affinity interactions between 

SP-D and glycans. The stable coordination of saccharide hy

droxyl groups with the primary calcium ion contributes to 

the proper orientation and stabilization of the glycan within 

the binding site, facilitating optimal interactions with the 

surrounding residues.

Identifying potent immunoprotein binders for 

pathogenic surface glycans

To demonstrate the applicability of our computational 

modeling workflow in predicting novel pathogenic surface 

glycan binders, we applied it to study the interactions be

tween the pilin glycan of P. aeruginosa and three major hu

man immunoproteins: SP-A, SP-D, and MBL. P. aeruginosa 

is a prevalent pathogen in immunocompromised patients, 

particularly those with cystic fibrosis affecting the lungs. 

Its pili, hair-like structures adorned with surface glycans, 

facilitate attachment to host cells. Identifying the immuno

protein most capable of effectively binding to the pilin 

glycan can provide crucial insights into the innate immune 

response against P. aeruginosa infection and guide the 

development of targeted therapies.

We predicted the stable binding of the pilin glycan to 

each immunoprotein using our computational workflow, 

followed by extensive MD simulations to assess the dy

namic behavior and binding stability of these complexes. 

We analyzed the shortest distances between the pilin 

glycan and the primary calcium ion in the three immuno

proteins to evaluate their binding stabilities. The distance 

curves, illustrated in Figs. 6, 7, and 8, revealed that SP-D 

exhibits the most stable binding with the pilin glycan, 

maintaining a consistent interaction throughout the 

1000 ns MD simulation (Fig. 6). In contrast, the pilin 

glycan dissociates from SP-A and MBL after approxi

mately 600 and 350 ns of MD simulation (Figs. 7 and 8), 

respectively. These results suggest that SP-D is potentially 

the most potent immunoprotein for binding the pilin glycan 

from P. aeruginosa. Future studies combining computa

tional predictions with experimental investigations will 

enhance our understanding of protein-glycan interactions 

and facilitate the development of targeted therapies against 

pathogens like P. aeruginosa.

Our computational modeling workflow has proven to be a 

powerful tool for accurately predicting stable protein-glycan 

FIGURE 5 (a) Coordination geometry of the calcium ion with glycan hy

droxyl groups and surrounding SP-D residues. (b) Spearman correlation be

tween chelation occupancy and MMGBSA binding free energies, 

illustrating an inverse relationship.
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complex structures and identifying key residues involved in 

the binding process. The identification of primary and sec

ondary binding sites in SP-D, along with the discovery of 

the correlation between calcium chelation stability and 

binding affinity, provides valuable insights into the binding 

mechanisms between SP-D and pathogenic surface glycans. 

Additionally, the application of our workflow to predict the 

binding of the pilin glycan from P. aeruginosa to human im

munoproteins highlights its potential in identifying novel 

therapeutic targets.2

CONCLUSIONS

In this study, we developed a comprehensive computational 

modeling workflow that integrates induced fit docking, 

MMGBSA binding free energy calculations, and BPMD 

simulations to predict stable protein-glycan complex struc

tures. This workflow was validated against experimental 

data, demonstrating its reliability in predicting glycan bind

ing preferences and establishing it as a valuable tool for 

studying protein-glycan interactions.

Through this workflow, we identified the primary and sec

ondary binding sites in SP-D, which are crucial for glycan 

recognition and binding. Notably, our previous study found 

that the D325A and R343V variants in SP-D, located in the 

secondary binding site, enhance SP-D’s binding with an 

oligosaccharide from IAV. This highlights the secondary 

binding site’s importance in modulating SP-D’s binding af

finity and specificity toward different glycan targets. Addi

tionally, we discovered a ubiquitous calcium chelation 

mode correlating with high binding affinity, providing a 

key mechanism for stable and specific interactions between 

SP-D and its glycan targets.

The successful application of our workflow to predict the 

binding of pilin glycan from P. aeruginosa to different im

munoproteins underscores its potential for identifying 

novel pathogenic surface glycan binders. Our findings indi

cate that SP-D exhibits the most stable binding with pilin 

glycan among SP-A, SP-D, and MBL, suggesting that 

SP-D may play a critical role in the innate immune 

response against P. aeruginosa infection in the lung. This 

knowledge can inform future experimental studies aimed 

at designing engineered SP-D variants with enhanced bind

ing affinity and specificity for P. aeruginosa and other 

pathogens, guiding the development of SP-D-based 

therapies.

In conclusion, our study presents a robust computa

tional modeling workflow that elucidates the binding 

mechanisms between SP-D and glycans. These findings 

enhance our understanding of SP-D’s role in the innate 

immune response and lay the groundwork for future appli

cations in therapeutic development targeting protein- 

glycan interactions.

FIGURE 6 (a) Shortest distances between pilin glycan and primary cal

cium ion of SP-D. (b) Representative conformations from 0, 500, and 

1000 ns show how pilin glycan interacts with the SP-D.

FIGURE 7 (a) Shortest distances between pilin glycan and primary cal

cium ion of SP-A. (b) Representative conformations from 0, 500, and 

1000 ns show how pilin glycan interacts with the SP-A.

FIGURE 8 (a) Shortest distances between pilin glycan and primary cal

cium ion of MBL. (b) Representative conformations from 0, 500, and 

1000 ns show how pilin glycan interacts with the MBL.
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Table S1 Viral glycan fragment library. 

Glycan fragment Name 

 

DManpa1-OH 

 

DGlcpNAcb1-OH 

 

DGalpb1-OH 

 

DNeup5Aca2-OH 

 

LFucpa1-OH 

 

DGlcpa1-OH 

 

DManpa1-6DManpa1-OH 

 

DManpa1-3DManpa1-OH 

 

DManpa1-2DManpa1-OH 

 

DManpa1-2DManpa1-6DManpa1-OH 

 

 

DManpa1-2DManpa1-2DManpa1-OH 

 

DManpa1-2DManpa1-3DManpa1-OH 

 

DGlcpa1-2DGlcpa1-3DGlcpa1-OH 



 

DGlcpa1-2DGlcpa1-OH 

 

DGlcpa1-3DGlcpa1-OH 

 

DGlcpa1-3DManpa1-2DManpa1-OH 

 

DGlcpa1-3DGlcpa1-3DManpa1-OH 

 

DGlcpNAcb1-2DManpa1-OH 

 

DGlcpNAcb1-4DManpa1-OH 

 

DGlcpNAcb1-6DManpa1-OH 

 

DNeu5Aca2-6DGalpb1-OH 

 

DNeu5Aca2-6DGalpb1-

4DGlcpNAcb1-OH 

 

DNeu5Aca2-6DGalpb1-

4DGlcpNAcb1-2DManpa1-OH 

 

DGalpb1-4DGlcpNAcb1-OH 

 

DGalpb1-4DGlcpNAcb1- 

6DManpa1-OH 

 

DGalpb1-4DGlcpNAcb1- 

4DManpa1-OH 

 

DGalpb1-4DGlcpNAcb1- 

2DManpa1-OH 



 

DNeu5Aca2-3DGalpb1-OH 

 

DNeu5Aca2-3DGalpb1-

4DGlcpNAcb1-OH 

 

DGlcpNAcb1-2DManpa1-3DManpb1-

OH 

 

DGlcpNAcb1-2DManpa1-6DManpb1-

OH 

 

 

DGlcpNAcb1-4DManpa1-3DManpb1-

OH 

 

DGlcpNAcb1-6DManpa1-6DManpb1-

OH 

 

LFucpa1-6DGlcpNAcb1-OH 

 

  



Table S2. Comparison of MMGBSA dG values and RMSD from binding pose metadynamics 

(BPMD) simulations for the top 5 poses of glycans. 

Glycan Binding poses MMGBSA dG (kcal/mol) 
RMSD after 

BPMD (Å) 

DGalpb1-4DGlcpNAcb1-

6DManpa1-OH 

Pose 1 -68.03 2.57 

Pose 2 -75.05 4.92 

Pose 3 -75.20 5.39 

Pose 4 -72.34 5.78 

Pose 5 -63.69 9.13 

DGalpb1-OH 

Pose 1 -24.64 0.88 

Pose 2 -26.81 1.04 

Pose 3 -25.60 1.33 

Pose 4 -23.81 2.60 

Pose 5 -24.83 6.65 

DGlcpNAcb1-2DManpa1-

6DManpb1-OH 

Pose 1 -74.75 1.54 

Pose 2 -74.41 2.04 

Pose 3 -70.61 2.66 

Pose 4 -77.26 3.11 

Pose 5 -75.09 3.85 

DGlcpNAcb1-2DManpa1-

OH 

Pose 1 -37.30 1.10 

Pose 2 -40.32 1.19 

Pose 3 -53.12 2.56 

Pose 4 -41.34 2.93 

Pose 5 -45.53 3.52 

DGlcpNAcb1-4DManpa1-

3DManpb1-OH 

Pose 1 -51.41 2.28 

Pose 2 -47.34 2.31 

Pose 3 -47.60 4.41 

Pose 4 -47.01 4.99 

Pose 5 -56.63 5.09 

 

  



Table S2. Continued. 

Glycan Binding poses MMGBSA dG (kcal/mol) 
RMSD after 

BPMD (Å) 

DGlcpNAcb1-4DManpa1-

OH 

Pose 1 -39.97 1.41 

Pose 2 -39.56 1.42 

Pose 3 -41.54 1.78 

Pose 4 -51.20 2.08 

Pose 5 -38.41 2.44 

DGlcpNAcb1-6DManpa1-

6DManpb1-OH 

Pose 1 -69.83 3.38 

Pose 2 -63.67 3.84 

Pose 3 -71.97 3.93 

Pose 4 -80.79 4.85 

Pose 5 -67.80 5.35 

DGlcpNAcb1-6DManpa1-

OH 

Pose 1 -48.33 1.70 

Pose 2 -48.21 2.06 

Pose 3 -51.77 3.57 

Pose 4 -45.75 3.76 

Pose 5 -50.77 3.81 

DGlcpNAcb1-OH 

Pose 1 -24.51 0.96 

Pose 2 -26.26 1.11 

Pose 3 -24.37 4.14 

Pose 4 -27.84 4.33 

Pose 5 -25.57 4.65 

DGlcpa1-2DGlcpa1-OH 

Pose 1 -36.82 1.29 

Pose 2 -39.76 1.97 

Pose 3 -36.86 2.56 

Pose 4 -42.22 2.74 

Pose 5 -38.97 3.17 

 

  



Table S2. Continued. 

Glycan Binding poses MMGBSA dG (kcal/mol) 
RMSD after 

BPMD (Å) 

DGlcpa1-3DGlcpa1-OH 

Pose 1 -36.56 1.80 

Pose 2 -36.71 2.17 

Pose 3 -34.81 2.51 

Pose 4 -31.19 2.71 

Pose 5 -30.60 3.14 

DGlcpa1-3DManpa1-

2DManpa1-OH 

Pose 1 -45.53 2.81 

Pose 2 -51.07 3.24 

Pose 3 -50.92 3.74 

Pose 4 -40.65 3.88 

Pose 5 -43.18 4.93 

DGlcpa1-OH 

Pose 1 -19.62 0.79 

Pose 2 -21.25 2.47 

Pose 3 -17.02 3.15 

Pose 4 -16.82 3.23 

Pose 5 -23.44 8.27 

DManpa1-2DManpa1-

2DManpa1-OH 

Pose 1 -41.87 1.83 

Pose 2 -36.10 2.47 

Pose 3 -37.46 4.06 

Pose 4 -37.17 4.85 

Pose 5 -42.64 8.98 

DManpa1-2DManpa1-

3DManpa1-OH 

Pose 1 -37.27 2.48 

Pose 2 -40.93 2.51 

Pose 3 -41.90 2.63 

Pose 4 -43.42 3.64 

Pose 5 -53.60 6.92 

 

  



Table S2. Continued. 

Glycan Binding poses MMGBSA dG (kcal/mol) 
RMSD after 

BPMD (Å) 

DManpa1-2DManpa1-

6DManpa1-OH 

Pose 1 -48.58 3.10 

Pose 2 -57.37 3.50 

Pose 3 -43.75 3.82 

Pose 4 -47.92 4.38 

Pose 5 -54.01 4.94 

DManpa1-2DManpa1-OH 

Pose 1 -36.07 2.07 

Pose 2 -35.95 2.44 

Pose 3 -35.66 2.74 

Pose 4 -39.67 3.01 

Pose 5 -34.54 3.53 

DManpa1-3DManpa1-OH 

Pose 1 -33.73 1.62 

Pose 2 -37.31 1.96 

Pose 3 -35.30 2.27 

Pose 4 -32.69 2.46 

Pose 5 -34.41 2.64 

DManpa1-6DManpa1-OH 

Pose 1 -37.31 1.01 

Pose 2 -38.46 1.66 

Pose 3 -41.39 1.95 

Pose 4 -38.64 3.20 

Pose 5 -36.72 3.84 

DManpa1-OH 

Pose 1 -26.31 0.64 

Pose 2 -20.80 0.77 

Pose 3 -26.88 0.83 

Pose 4 -19.73 1.08 

Pose 5 -24.17 1.66 

 



Table S2. Continued. 

Glycan Binding poses MMGBSA dG (kcal/mol) 
RMSD after 

BPMD (Å) 

DNeu5Aca2-3DGalpb1-OH 

Pose 1 -45.92 2.16 

Pose 2 -41.90 2.96 

Pose 3 -39.10 3.35 

Pose 4 -44.44 4.44 

Pose 5 -53.26 4.53 

DNeu5Aca2-6DGalpb1-OH 

Pose 1 -49.17 1.34 

Pose 2 -51.57 2.58 

Pose 3 -54.16 2.82 

Pose 4 -50.48 3.31 

Pose 5 -64.71 3.52 

DNeup5Aca2-OH 

Pose 1 -28.27 1.81 

Pose 2 -30.61 2.00 

Pose 3 -29.71 2.53 

Pose 4 -30.63 2.94 

Pose 5 -29.76 5.01 

LFucpa1-6DGlcpNAcb1-OH 

Pose 1 -40.17 1.49 

Pose 2 -41.69 2.07 

Pose 3 -40.39 2.57 

Pose 4 -45.01 2.63 

Pose 5 -47.66 2.67 

LFucpa1-OH 

Pose 1 -23.27 0.63 

Pose 2 -20.92 0.79 

Pose 3 -21.28 0.82 

Pose 4 -21.24 0.91 

Pose 5 -28.86 0.92 

  



 

 

 

 

Figure S1. 2D structure of pilin glycan of Pseudomonas aeruginosa strain 1244. 

 

 

 

 

Figure S2. 3D structure of pilin glycan of Pseudomonas aeruginosa strain 1244. 

  



 

Figure S3. The RMSD of SP-D after induced fit docking (IFD) with different glycans. Higher 

RMSD values indicate more extensive conformational adjustments within the binding site and thus 

a more pronounced induced-fit effect. 
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